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CRITICAL PATH ANALYSES VIA CHANCE CONSTRAINED AND STOCHASTIC PROGRAMMING 

1.  Introduction; 

A question whigh combines statistics and linear programming considera- 

tions was first raised by G. Tintner in [11].^ It concerns the distribution 

of optimum functional values when a linear programming problem has 

probabilistic constraints. 

We propose to accord a chance constrained programming formulation 

to this kind of problem and to deal with it in a way that bears on project 

scheduling of the kipd that is usually associated with critical path 

analysis.^ For instance in PERT - and related versions of critical path 

scheduling — an attempt is made to deal with random time variations by 

reference to a procedure like the following.  Three tiones are assumed 

for each task:  (l) a pessimistic time value, (2) a normal time and (3) 

an optimistic time.  These are multiplied by, respectively, l/6, 2/3 

and 1/6 and summed to derive a new time for each task. The new times 

'are then used to derive a critical path from which an estimate of the 

total time is then derived. 

In the present paper we shall assume that a particular distribution 

of times applies to each branch of the project network.  Then we attempt 

to characterize the resulting distribution of total project completion 

times.  This is done by virtue of a minimizing principle which implicitly 

carries with it a characterization of the critical paths that are 

associated with each set of time realizations that the distributions 

1/ See also [10]. 

2/ See [1], [6], [?], [8] and [9] as well as dereferences cited therein. 

* We are indebted to Dr. D. Learner, and others on the staff at Bauten. Barton, 
DurstS and Osborn for numerous discussion,, assistance and encouragement on 

various aspects of this and related work. 

Note-  The material in this report provided the basis for one part of a talk 
presented by the authors at The Symposium on Mathematical Programming. Chxcago. 
Assoc. for Computing Machinery and USAF Project RAND, June 19. 1962 
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admit for each branch of the network. We do not deal with these critical 

paths in any detail here, however, but reserve that topic for treatment 

in a subsequent paper. Only the simplest kind of decision rule~i.e., 

the zero order rule of chance constrained programming—will be exhibited 

here only for illustration to show how it encompasses the PERT rule as 

a special instance of a general class of risk control and evaluation 

procedures. 

The main focus of this paper is on the statistical distributions of 

the project completion (and sub-completion) times. The question of total 

time distributions that we deal with can therefore be given a managerial 

policy flavor by assuming that, ab initio, a management is considering a 

contract for a certain project. The task sequences are known but the 

times are not known except in probability. Before contracting for a 

target completion date—with resulting delay penalties—this management 

would, like to know the likely distribution of total times in order to 

decide whether to accept an offered contract or else bargain further 

on the completion dates, penalty rates and progress payments and prices. 

2.  Direct and Dual Linear Programming Problems for a Project Graph; 

With known task times, t., the critical path scheduling problem 

may be formulated as a network flow problem 

n 

(1) 

max 2 
3=1 ^

xi 

subject to 
n 
2 

3-1 
eiJ X3 

Xj 
> 

a 

0 

i=0, ..., m 



where a = -1, a •• 1 and all other a. ■ 0« The x. > 0 corresponds o    ' n i j — 

to uni-directlonal time progressionj the t ..    are the incidence numbers 
1/ ^ 

for the network. 

This is a linear programming problem. Hence it has a dual 

min  Z u. a 
i-0 i i 

(2) subject to 
m 
2 u e  >t 

1=0 1 iJ   J 

In fact this dual provides the basis for an efficient computational 

i/ 
algorithm—e.g., of the sub-dual algorithm variety.  Moreover, the 

value 2 u. a. for any u. satisfying the constraints of (2) provides 

an upper bound for the completion time associated with the critical path 

and, hence, associated also with the project's completion. Furthermore, 

the structure of the dual problem is such that for any given set of t.,, 

the optimal u. may be determined by one pass through the network 

associated with (l). 

Suppose that the known t.'s are now replaced by task times which 

are random variables with known statistical distributions. Because of 

the property of the dual (2)—and the related sub-dual algorithm —it 

is possible to compute, successively, u. values which are minimal with 

1/  See [k]  for further details or, more generally, see Chapter XVII 
in [S]. 

2/      See [3] and references cited therein. See also [l]. 

3/  See [1] and [3]. 
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re spe et to the sub-graph constraints to which they apply. Thus when 

the t. values are random variables these u. values will also emerge 

as random variables. This means that, in principle, it is possible to 

determine the distributions of the u. »s in terms of the distributions 

of the t.'s which are constraining for these u. values on the project 

graph. 

The matter may be put another way by assuming that one starts back 

from the node associated with the project's completion. Moving back up 

the graph one then determines successive u. values on a maximal time 

path to the associated node. Then, for fixed times, one applies to 

these u^ values the probability associated with each of the t. times 

on the path leading up to this node. In this fashion one can obtain 

probabilities for the different time values corresponding to the u- 

values achieved via the possible maximal time paths. 

3.  The Zero Order Rule; 

The simplest of the chance constrained progrsunming decision rules 

is a linear rule in which the coefficients of the t, variables are set 

y * 
equal to zero.  This means that we seek a set of values u. which solve 

m 
min  2 u. a. 

i-0 i i 

(3) subject to 

m 

i=>0 

1/  Vide, e.g., [2]. 
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where "P" means "probability" and 0 < P.. < 1 is a preassigned probability 

moasure for j"l, 2, ..., n. 

A solution of this problem amounts to determining a set of times 

associated with the inauguration of various tasks in such a manner that 

the probability of being able to complete the j— task is at least ß.. 

The latter may be called the risk guarantees desired for this j— task. 

The left hand side of each chance constraint j"l, «.., n can be 

rephrased analytically to achieve an expression in which 2 u. £'.. is 

a parameter. Thus, if F. is the marginal distribution of t. we may 
J J 

write 

m m 

J - i^Q 1 iJ    J i=0    J 

The chance constraint is thus transformed into a deterministic equivalent 

m 
(5) F^  2^6  )>p 

or, in view of the monotonicity of F. , 

(6) j^i^iD^^1^^ ' 

Via this mode of development we have the following 

m 
min   2 u. a. . n i i 

(7) 
,-1 

subject to 

j "1, • • •, n 

J 
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as a deterministic equivalent for (3). TJa^ number F~ (£.) represents, 
J   j 

of  oouroe, the fractile associated with p.. rurthermore, this 

deterministic equivalent has a dual which exhibits, perhaps somewhat 

better, the character of the problem since it is in direct network 

form. This problem is 

n  -1 
max  Z F.  (ß.) x. 

subject to 
n 

i"0, •••> m 

x. > 0. i - 

It may be instructive to observe how the F~ iß.)  coefficients, 

in the functional, appear under some of the statistical distributions 

that might be assumed. If F. ■ N (ti.., cr ) then 
, J v    «J 

where    N"^ is the,inverse of the N(0, 1) distribution function.    The 

functional of (8) then becomes 

(10) 2    Fj1 (^) Xj  -    2    (^ ♦ ffj N"1 (Pj)) Xj  . 

Another example is the log-normal distribution which gives the 

objective function 
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(11)      2 FT1 (ß.)  x. -  2 (e^d  «Ü adj) x. 

where e ^3 is the median of the j— log-normal distribution and 

i> . is the q— fractile of N(0, 1). 

The PERT rule corresponds to using the population mean of the 

three valued random variable t. with probabilities of, respectively, 
V 

■I o 

P-^ " 15 » Pi " f » P'h " 1/^• In general> for ■this distribution, 

the mean will not be an actually realized time. The protection level 

P., associated with this mean depends critically on whether the difference 
ü 

between the optimistic and normal time is greater or less than the 

difference between the normal time and the pessimistic time. The first 

case gives a protection level P.. < l/2j the second case gives PJ > 1/2» 

When the two are equal, so that mean coincides with the mode and the 

median, then ß - 1/2 will obtain. 

With the above formulation we are thus able to relate the 

functional used to the risk levels desired. The PERT procedure, when 

the assumed distribution applies, also carries this feature with it. 

On the other hand, it is there presented in the guise of an estimating 

procedure which has an evident implication for the risk protection that 

is secured upon effecting the planning decisions. Thus, in particular, 

the choice of symmetric low and high estimates carries an implication 

that the actually realized timss will, by random occurrences alone, lie 

either above or below the assumed value virtually all of the time. 
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i;.  Determination of Distribution of Times; 

We now turn to the task of determining the critical path node 

variables for each possible set of values that the t. variates may 

assume. That is, we want to determine implicitly the critical path 

for every possible collection of t. realizations with their associated 

probabilities. We shall do this indirectly, however, in that we 

determine the distribution of the w^ (t^.-., t^) satisfying 

m 
min Z   w. a. 

i-0 ^ 1 

(12) 

with 
m 
Z   "i^ij-S 

iri, n 

To compute the distributions for the w., we need have recourse 

only to obtaining the distribution function for sums of known random 

variables and for the maximum of a finite number of known random variables. 

Fpr some distributions--e.g., finite and discrete distributions, gamma 

distributions, etc.—it is possible to carry out these operations 

explicitly. This may be an onerous task, of course, but the electronic 

computer may offer relief in cases like discrete distributions. Thus, 

in these particular kinds of cases, it is possible to develop the related 

distribution functions directly and thereby answer the question originally 

posed by Tintner [11]. 
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To conclude tlö-s section we shall presen« an example of such 

a calculation. Conpider the graph shown in Figure 1. The times of the 

jobs are marked alongside the arrow representing the job. 

FIGURE 1 

For this example the inequalities of (12) become 

(13) 
-Wl    + W3 

-w 

- w, 

+ Wi. 

+ w. 

•^3 + WU 

^ h 
>   t. 

> H 

> % 

> t5 

2: ^6 
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J 

Since the solution of (12) is equivalent to finding the longest 

path through the network, the distribution of completion times can he 

found by successively finding the distribution of two jobs in series 

as in Figure 2(a), or in parallel as in Figure 2(b). 

0 
V 

© 

0 
(a) (b) 

FIGURE 2 

Clearly in (a), the time to complete both jobs is the sum s+t of the 

random variablesj and in (b), the time to complete both jobs is the 

maximum of the two random variables.    It is easy to establish the 

following two rules. 

(A) The density of the sum of two independent random 

variables is the convolution of their densities. 

(B) The distribution of the maximum of two independent 
y 

1/  For the critical path inequality structure it is possible to reduce 
all calculations to the use of these two rules even though at some 
stages one wants the maximum of two stochastically dependent random 
variables. See the example below. 
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random variables is the product of their two 

distributions. 

In order to carry out the calculations explicitly we assume that 

all job times have an exponential density function 

-et 
(HO 6 e , 0 < t < oo, 

which has a distribution function 

(15) F(a) - P(t < a) - 1 - e~ae . 

If we now make the further simpliiying assumption that the 

exponential functions are all characterized by the same parameter, 9, 

then we can tabulate the densities snd distributions of the various w. 
x 

as shown in Table 1. 

The calculations needed to obtain the entries of Table 1 are all 

elementaiy, but somewhat tedious. Hence we have tabulated them in detail 

so that this work need not be repeated by others. The same kinds of 

calculations could also be carried out for project graphs of bigger size, 

but the answers resulting might be very lengthy, perhaps several pages 

long, and, in general recourse to electronic computation would then be 

required. Pending completion of the instant codes, however, we can only 

conclude that an "in principle" demonstration of these possibilities 

has now been made. 
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In order to git a better idea of the values of the functions in 
' 1/ 

Table 1, wo computfd  then using an electronic computer for various values 

of completion time ^and have plotted the results in Figures 3 and 4. Note 

in Figure 4 that the density function for w  is bi-modal, although the 

area under the first loop of its graph is so small that it does not 

appear on the corresponding distribution in Figure 3, the extremely 

flat approach to zero of the distribution for w. is especially evident 

in Figure 3. These \and other features are displayed on the following. 

charts — which are based on electronic computations arranged for 

values of t running from 0 to 10 in increments of .02, to yield a mesh 

of 500 equally spaced points.— 

1/ The authors are indebted to Messrs. F. K. Levy and J. D. Wiest for 
carrying out these calculations on Carnegie Tech's Bendix G-20, and 
for drafting the accompanying charts, conducting supplementary analyses, 

etc. 
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5.  Conclusion and Further Extensions; 

On the baala of thin highly almpllfldd tsxample we oan draw soma 

interesting (if tentative) conclusions. Note, first, that this 

exponential distribution has the property that each modal task time is 

zero. Furthermore, the function is monotone decreasing. Hence, larger 

completion times are less probable than short ones. Thus, this distri- 

bution would tend to produce higher probabilities for shorter overall 

completion times than other kinds of less optimistic distribution 

functions that might be specified.  Nevertheless, asymptotic expansion 

shows that the overall distribution—the one for w, —vanishes to the 

sixth order for t=0. I.e., a short overall completion time is highly 

improbable. Thus, the interacting properties of the graph relations 

produces a rather striking result for these random variations. The 

overall behavior is different than the behavior of each of the parts. 

It must be expected that other densities can display other equally 

striking (possibly even surprising) results. 

One route of extension that is evidently open involves exploring 

other kinds of distributions and also, obviously, other kinds of project 

graphs. Computer codes for this purpose are in the process of being 

developed. 

In the present case we have emphasized the distribution of 

early start times for all jobs. Then when the final node is achieved 

the time that is there attained becomes the early completion time (in 

the usual usage) for the entire project. Of course, by working backwards. 
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up the graph, we can effect the same kind of result for the so-called 

late start times.  The difference between these two represents slack; 

but here we must allow for the possibility that negative as well as 

positive values of these variables may emerge.  The probability of this 

happening may, of course, be computed.  In fact this probability can 

then be accorded th« status of a risk measure of departing from any 

possible critical path. 

In current practice (e.g., PERT, etc.), the analysis is directed 

toward an explicit designation of a critical path for an entire project. 

But extensions via the higher order^  decision rules of chance constrained 

programning would suggest a somewhat different course.  Early start 

times could then be utilized, for example, to provide effective pro- 

cedures for developing multiple (dynamic) critical paths that take into 

account the deviations from anticipated task times, the precedence 

relations and the overall statistics of task time performance. This 

would include both risk and quality levels — and associated evaluations 

and controls — of the kind which chance constrained programming was 

2/ 
explicitly designed to handle.-/  It could also include non-independence 

of earlier and later task times, especially when aspects of task learning 

are involved on various parts of a project graph.^ 

1/ I.e., of higher order than the ones discussed in supra, section 3. 
See, e.g., [2]. ' 

2/ See [5]. 

2/ Such "learning" or "progress curve" functions have proved to be of 
considerable importance in many cases — e.g.* as in setting contract 
terms and schedules for construction and new item production in 
World War II. 



-18- 

A use of higher order decision rules with a focus on early start 

times makas it possible to bypass the need for an explicit development 

of the resulting conditional critical paths (or portions thereof). That 

is, instead of specifying these paths In toto, as in current practice, 

the higher order decision rules of chance constrained programming would 

follow a different course of development.  For instance, the emergence 

of specific early start times would be used to complete the certainty 

equivalent relations for chance constrained programming in order thereby 

to designate explicitly the next portion of the (implied) overall critical 

■pathM    Each of several conditional critical paths would then be 

implicitly carried forward and the final total chain (critical path) 

would then be known with certainty only upon the project's completion. 

Finally, the dual evaluators (when available) can be used to examine 

possible variations in rijk or quality levels or, alternatively, the 

desirability of undertaking the total commitment implied by the contract 

can be ascertained by considering the statistical variations for minimum 

completion times which are likely to result from a given project graph 

whose links are subject to known random time variations. 

1/ Vide, e.g., [2]. 
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